ML: Die geknüpften Erwartungen sind hoch


Maschinelles Lernen in der Cybersicherheit: Einsatzgebiete und Grenzen
Die meisten Modelle, die auf maschinellem Lernen basieren, müssen periodisch aktualisiert werden



Von Igor Baikalov, Chief Scientist bei securonix

Die an Maschinelles Lernen (ML) geknüpften Erwartungen sind hoch, und das mit gutem Grund. Algorithmen, die auf maschinellem Lernen basieren, erlauben es uns beispielsweise enorme Mengen von Sicherheitsvorkommnissen auf Anomalien hin zu sichten. Also Abweichungen von einem als normal definierten Verhalten zu erkennen, die häufig Anzeichen für böswillige Aktivitäten sind. Die Ergebnisse dieses Sichtungsprozesses werden an einen Analysten übermittelt, der sie durchsieht und gründlich überprüft. Anschließend wird das System mit den Ergebnissen gefüttert um es weiter zu trainieren. Mit mehr und mehr in das System eingespeisten Daten entwickelt es sich sukzessive weiter: Es lernt ähnliche Sicherheitsvorkommnisse zu erkennen und letztendlich deren zugrunde liegende Charakteristika eines böswilligen Verhaltens.

Unsupervised Learning
Der erste Teil dieses Prozesses besteht im Erkennen von Anomalien, und man bezeichnet ihn als "Unsupervised Learning". Es ist eine kostengünstige Methode, die in Maschinengeschwindigkeit abläuft und mit der man große Datenmengen sichten kann. Sie erzeugt allerdings auch ein extrem hohes Grundrauschen. Elektronische Signale unterliegen natürlichen Schwankungen. Vor allem dann, wenn sie menschliche Aktivitäten widerspiegeln. Das führt zu gewissermaßen oberflächlichen Anomalien. Leitet man sämtliche dieser Anomalien an einen Analysten weiter, ist er mit dieser Flut potenzieller Events vollkommen überfordert.

Das führt in der Praxis nicht selten zu einer gewissen Ermüdung und Desensibilisierung für tatsächliche Anomalien. Eines der bekanntesten Beispiele für so einen Fall ist die Datenschutzverletzung bei einer Handelskette im Jahr 2013. Hier hatte die Überwachungssoftware zwar die betreffende Malware-Infektion erkannt und gemeldet. Der Alert ging aber in hunderten wenn nicht tausenden weiterer Benachrichtigungen unter und wurde übersehen. Das Ergebnis: 40 Millionen offengelegte Datensätze mit Kredit- und Debitkartennummern.

Es gibt verschiedene Wege die Zahl lästiger False Positives zu senken. Man kann etwa domänenübergreifende Korrelationen (cross-domain correlation) nutzen um ein Vorkommnis aus verschiedenen Blickwinkeln zu betrachten. Eine böswillige Aktivität manifestiert sich potenziell durch unterschiedliche Anomalien. Führt man diese Beobachtungen zusammen, erhält man ein deutlich stärkeres Signal als würde man sie isoliert voneinander betrachten. Diese Art von Analysen läuft typischerweise über komplexe Modellbildungen von Bedrohungen (Threat Modeling) ab.

Diese Modelle sind nicht nur in der Lage die Zahl der False Positives zu senken, sie können auch zeitlich getrennt voneinander ablaufende Ereignisse zueinander in Beziehung setzen. Jeder Angriff weist eine typische "Kill Chain" auf innerhalb der sich das Risiko steigert. Wenn man potenzielle Bedrohungen oder Bedrohungskomponenten in diese typische Kill Chain einordnet, erlaubt das ein deutlich früheres Erkennen eines Angriffs. Und damit haben Sicherheitsanalysten eine weit größere Chance Attacken zu verhindern, bevor diese ein Stadium erreichen, in dem sie erheblich größeren Schaden anrichten.

Eine andere Methode um die Zahl der falschen Positivmeldungen zu senken ist die Vergleichsanalyse, auch Peer-Group-Analyse genannt. Hier bildet man Vergleichsgruppen, in denen man ähnliche Charakteristika oder Aktivitäten zusammenfasst. Dabei geht man von der Annahme aus, dass diese Gruppierungen gemeinsame Funktionen aufweisen, die gemeinsame normale Aktivitäten repräsentieren. Wenn dann ein individuelles Verhalten abzuweichen scheint, wird dies anhand der Vergleichsgruppe überprüft. Bewegen sich die Anomalien innerhalb der Norm der betreffenden Vergleichsgruppe, handelt es sich wahrscheinlich um eine False-Positive-Meldung, die man ignorieren kann.

Supervised Learning
Den zweiten Teil des Trainingsprozesses für das ML-basierende System bezeichnet man als überwachtes oder "supervised Learning". Hier gilt es eine Funktion zu finden, mit der man bisher unbekannte Beobachtungen einem Datenset, einer Klasse oder einem Wert zuordnen kann. Dazu werden die Daten mit einem sogenannten Label versehen. Bei der binären Klassifikation kennzeichnet man jedes Event entweder als positiv oder negativ. Üblicherweise übernehmen diese Aufgabe Sicherheitsanalysten. Das ist allerdings nicht nur der teuerste Weg, es ist auch ein sehr zeitaufwendiger und kaum geeignet mit der Menge der zu analysierenden Daten Schritt zu halten.

Crowdsourcing ist für sensible Daten keine Option und verbietet sich von selbst. Jüngste Fortschritte im Bereich der generativen Modellbildung machen die menschliche Erfahrung nutzbar um Funktionen zu bilden, die Labels auf hohem Niveau vergeben statt sie auf Einzelfallbasis zuzuweisen (man vermeidet so ein Überwachungsmodell, das Schwächen schon in sich selbst trägt). Heute sind wir an einem Punkt angelangt, an dem diese Funktionen in die Cybersicherheit Eingang gefunden haben. Es gibt auch einige Fälle in denen man das Wissen und die Erkenntnisse einer Domain nutzen kann um ein anderes Dataset zu kennzeichnen. Das ist beispielsweise der Fall, wenn man den Hashwert bekannter Malware-Dateien nutzt, um ein Dataset mit den Verhaltensmerkmalen einer Malware zu kennzeichnen.

Im Allgemeinen aber basiert überwachtes Lernen hauptsächlich auf manuell gekennzeichneten Datasets. Gut durchdachte Bedrohungsmodelle senken die Zahl der False-Positive-Fälle, die ein Analyst zu prüfen hat, und machen so den Kennzeichnungsprozess effizienter. Ein aggressiver Trainingsplan mit einem optimalen Mix aus positiven und negativen Beispieldaten hilft ebenfalls den Prozess zu beschleunigen. Bei allem Willen zur Optimierung sollte man aber das Kind nicht mit dem Bad ausschütten.

Man kann die Zahl von falschen Positivmeldungen sehr einfach senken, indem man den Grenzwert, also die Detektionsschwelle, nach oben setzt. Damit geht man allerdings gleichzeitig das Risiko falsche Negativmeldungen zu produzieren. False Positives bedeuten letztendlich nur mehr Aufwand beim Aufdecken böswilliger Aktivitäten. Falsche Negativmeldungen bedeuten aber nichts anderes, als dass man eine laufende Bedrohung nicht mehr auf dem Radar hat. Nicht unbedingt eine gute Voraussetzung für Cybersicherheit. Wie uns der Fall Target gelehrt hat, kann allerdings auch eine hohe Zahl von False Positives dafür sorgen, dass die eigentliche Warnung untergeht und übersehen wird.

Ein gutes Modell muss nach einer tauglichen Balance zwischen diesen beiden Metriken streben. Es existiert immer ein Kompromiss zwischen den False-Positive- und den False-Negative-Raten, oder zwischen Sensitivität und Spezifität des Verfahrens. Bei der Modellbildung sollte man beide nutzen.

Maschinelles Lernen und Cybersicherheit
Datasets in der Cybersicherheit sind berüchtigt dafür extrem unausgewogen zu sein. Im Klartext heißt das, die Zahl der positiven (bösartigen) Events liegt häufig in einem Bereich von unter 1 Prozent der Gesamtzahl. Schlimme Dinge passieren, wenn auch hoffentlich nicht zu oft. Und wenn die Zahl fehlgeschlagener Anmeldeversuche gegen 50 Prozent geht, braucht niemand mehr maschinelles Lernen um festzustellen, dass man gerade ein ernsthaftes Problem hat. Wie man am besten mit unausgewogenen Datasets in einem Modell umgeht würde den Rahmen dieses Beitrags sprengen. Aber zu wissen, welche Metriken man am besten verwendet, um die Leistungsfähigkeit seines Modells zu messen ist enorm wichtig.

Genauigkeit wird uns in diesem Fall eher wenig Informationen bereitstellen, weil sie in einem Bereich von 99 Prozent+ angesiedelt ist. Die Receiver Operating Characteristic, kurz ROC, ist ebenfalls ein gern genutztes statistisches Verfahren, mit dem man die Aussagekraft von Laborparametern und Untersuchungsverfahren optimieren und vergleichen kann. Leider eignet sich auch dieses Verfahren wenig für unausgewogene Datasets, weil die False-Positive-Rate irreführend niedrig bleibt während demgegenüber die Zahl der Negatives zu hoch ist. Eine bessere Wahl sind der aus der Bioinformatik kommende "Matthews Correlation Coefficient" oder "Cohens Kappa", ein statistisches Maß für die Interrater-Reliabilität von Einschätzungen von (in der Regel) zwei Beurteilern (Ratern), von Jacob Cohen 1960 vorgeschlagen.

Die meisten Modelle, die auf maschinellem Lernen basieren, müssen periodisch aktualisiert werden. Vorhersagemodelle basieren auf der impliziten Annahme, dass sich das den Daten zugrunde liegende Modell nicht ändert. In vielen Fällen verändern sich aber die Beziehungen auf denen das Modell beruht, was man als "Concept Drift" bezeichnet. Dann muss man neue Datenpunkte mit aufnehmen.

Wie häufig man ein Modell aktualisieren muss hängt von Zahl der Datenänderungen ab, der Größenordnung des Concept Drift, den Präzisionsanforderungen ebenso wie vom Umfang des Modells und der zur Verfügung stehenden Rechnerleistung. Nehmen wir beispielsweise ein Modell, dass auf Domain Generation Algorithm (DGA) Malware-Samples trainiert wurde. Auch wenn jeden Tag Hunderttausende neue DGA-Domänennamen erzeugt werden, bleibt das zugrunde liegende Prinzip immer das gleiche. Das Modell wird vielleicht monatlich aktualisiert oder immer dann, wenn eine neue DGA-Malware-Familie entdeckt wurde. Da dieses Modell nur vergleichsweise selten aktualisiert werden muss, kann man es sich leisten, es von Grund auf neu und auf Basis eines neuerlich ausgeglichen Datasets aufzubauen.

Das Benutzerverhalten anderseits ist eine fließende Größe, und die zugehörigen Profile müssen mindestens täglich aktualisiert werden um neue Trends zu erkennen und False Positives zu senken. Überwachte Modelle, die zusätzlich das Feedback von Analysten integrieren, brauchen noch wesentlich häufiger Updates, bevorzugt in Echtzeit. Schon allein um zu verhindern, dass ein Analyst sehr viele gleichartige Fälle untersuchen muss. Diese Anforderungen, gepaart mit dem schieren Volumen der zu analysierenden Daten treibt einen sehr schnell aus der Komfortzone strategischen Lernens hin zu Streaming-Analysen und Online-Lernmodellen wie Mondrian Forest, die sich schrittweise aktualisieren lassen. Einem Modell mehr Daten zur Verfügung zu stellen scheint zunächst ein guter Weg zu sein, um die Qualität des Modells zu verbessern. Das funktioniert allerdings nur solange die neu dazukommenden Daten die Diversität des Datasets erweitern und dem Modell inhaltlich neue Informationen geben. Diversität ist neben durchdachten Funktionen, gut eingestellten Parametern und der Kontrolle der Überanpassung eines Modells, einer der Schlüsselfaktoren für ein verallgemeinerbares Modell.

Doch trotz der pflichtbewussten Trennung von Trainigs- und Testdaten, trotz Kreuzvalidierung und anderen guten Absichten, beschränken sich die meisten verhaltensbasierten Modelle darauf, oberflächliche Funktionsähnlichkeiten wiederzugeben und nicht die zugrundeliegenden Charakteristika böswilligen Verhaltens. Solche Modelle funktionieren ganz wunderbar, wenn sie auf ein Verhalten stoßen anhand dessen sie trainiert wurden. Und sie versagen ganz jämmerlich, wenn sie auf ein Verhaltensmuster treffen, dem sie vorher noch nicht begegnet sind. Will man die Diversität steigern, muss man Daten unterschiedlicher Kunden, verschiedener Branchen und Industriezweige, Unternehmensgrößen und Regionen mit einbeziehen. Durch die Sensitivität von Daten in der Cybersicherheit kann man diese Datasets nicht direkt miteinander kombinieren.

Man kann aber einen eleganten Umweg nehmen, den des Federated Learning. Federated Learning erlaubt das kooperative Lernen innerhalb eines geteilten Vorhersagemodells während die dazu notwendigen Trainingsdaten auf den entsprechenden Systemen verbleiben. So lassen sich individuelle Modelle sicher ausbalancieren, ohne dass man ein Master-Modell benötigt. Anders als bei vielen anderen Machine-Learning-Ansätzen braucht man dazu keine zentralisierten Trainingsdaten. Die Vertraulichkeit von Kundendaten bleibt gewahrt.

Wie bei jeder anderen neuen Technologie, steht und fällt die erfolgreiche Einführung von ML in der Cybersicherheit mit der Glaubwürdigkeit ihrer Resultate. Dazu muss man ein solches Programm von Grund auf aufbauen, von einfachen, leichter zu verstehenden Verhaltensindikatoren hin zu komplexen hierarchisch strukturierten Bedrohungsmodellen, die sich auf die Kill Chain von Attacken anwenden lassen. Die meisten Aspekte von unsupervised Learning wie Cluster, Pattern und Anomalien, sind einfach zu erfassen, zu visualisieren und zu validieren. Komplexe, auf maschinellem Lernen basierende Algorithmen wie Ensemble-Learning- oder Deep-Learning-Algorithmen bleiben potenziell eine Art "Black Box". Vorhersagen zu erläutern, die auf Basis solcher Algorithmen getroffen wurden ist alles andere als trivial. Selbst für die DARPA (Defense Advanced Research Projects Agency) Anlass genug innerhalb der Community nach "Explainable Artificial Intelligence zu suchen.

Wenn man wie unserem Fall komplett neue Algorithmen entwickelt hat, um Vorhersagen zu erläutern, die unsere Ensemble-Learning-Methoden getroffen haben, ist das ein aufwendiges Verfahren. Aber es zahlt sich aus: Verstehen sorgt für Vertrauen. Das wiederum führt zu mehr Verlässlichkeit von ML-basierenden Ergebnissen, steigert die Produktivität und schaufelt Ressourcen frei, die anderer Stelle für wichtigere Aufgaben dringend gebraucht werden.

Zum Abschluss noch einige praktische Empfehlungen wie Sie maschinelles Lernen innerhalb eines Cybersicherheitsprogramms am besten nutzen:

>> Integrieren Sie so viele Verhaltensindikatoren wie möglich um möglichst alle Anzeichen für ein böswilliges Verhalten zu erfassen.

>> Nutzen Sie Vergleichsgruppenanalysen und hierarchisch strukturierte Bedrohungsmodelle um die Zahl der False-Positive-Meldungen zu senken.

>> Entwickeln Sie Kill Chains anhand bereits bekannter Angriffsszenarien und ein "Catch-all"-Schema für die noch unbekannten.

>> Sammeln Sie das komplette Feedback Ihrer Analysten nicht nur Informationen zu bestätigten Positiv-Meldungen. Erstellen Sie auf dieser Basis Labels für die Datasets für überwachtes und schwach überwachtes Lernen.

>> Sie sollten wissen, welche Metriken in den Modellen zum Tragen kommen, aktualisieren Sie Ihre Modelle dementsprechend um einen Concept Drift zu verhindern.

>> Streben Sie nach möglich gut zu generalisierenden Modellen mittels durchdachter Funktionen und einer möglichst hohen Diversifizierung der Datasets.

>> Einen Schritt nach dem anderen: Bauen Sie ein transparentes, verlässliches und gut verstandenes ML-Ökosystem auf. Schritt für Schritt.
(securonix: ra)

eingetragen: 07.07.19
Newsletterlauf: 22.07.19

securonix: Kontakt und Steckbrief

Der Informationsanbieter hat seinen Kontakt leider noch nicht freigeschaltet.


Meldungen: Grundlagen

Der CISO: Definition und Aufgaben

Was muss ein CISO mitbringen? In der heutigen Bedrohungslandschaft tragen Chief Information Security Officers eine erhebliche Verantwortung. Sie haben großen Einfluss auf das Unternehmen und müssen ihren Wert und ihre Kompetenz regelmäßig unter Beweis stellen.

Welche Spuren interne Täter im Netzverkehr legen

Viele Diskussionen malen gerne den eigenen Mitarbeiter als IT-Sicherheitsrisiko an die Wand. Die tatsächliche Gefahr, die von ihm ausgeht, ist aber oft unklar. Verschiedene Täterprofile interner Angreifer können größeren Schaden anrichten.

Verbesserte IT-Sicherheit und Resilienz

Anlässlich der EU-NATO-Task Force über die Resilienz der Kritischen Infrastruktur (KRITIS) in Europa mehren sich auch in Deutschland die Diskussionen darüber, wie diese bestmöglich geschützt werden kann. Die vier Schlüsselbereiche, die laut des vor Kurzem veröffentlichten EU/NATO-Papiers eine erhöhte Anfälligkeit für Cyber-Angriffe bieten und somit besonders schützenswert sind, sind Energie, Verkehr, digitale Infrastruktur und Weltraum.

KI macht Ransomware noch gefährlicher

Ransomware ist schon längere Zeit ein echtes Problem für Organisationen jeder Art und Größe. Betrachtet man die neuesten Entwicklungen, ist keine Entwarnung in Sicht. Eher im Gegenteil: Die Kriminellen nutzen mittlerweile KI, um ihre Angriffe noch effizienter zu machen.

Besuchen Sie SaaS-Magazin.de

SaaS, On demand, ASP, Cloud Computing, Outsourcing >>>

Kostenloser Newsletter

Werktäglich informiert mit IT SecCity.de, Compliance-Magazin.de und SaaS-Magazin.de. Mit einem Newsletter Zugriff auf drei Online-Magazine. Bestellen Sie hier

Fachartikel

Grundlagen

Big Data bringt neue Herausforderungen mit sich

Die Digitale Transformation zwingt Unternehmen sich mit Big Data auseinanderzusetzen. Diese oft neue Aufgabe stellt viele IT-Teams hinsichtlich Datenverwaltung, -schutz und -verarbeitung vor große Herausforderungen. Die Nutzung eines Data Vaults mit automatisiertem Datenmanagement kann Unternehmen helfen, diese Herausforderungen auch mit kleinen IT-Teams zu bewältigen. Big Data war bisher eine Teildisziplin der IT, mit der sich tendenziell eher nur Großunternehmen beschäftigen mussten. Für kleinere Unternehmen war die Datenverwaltung trotz wachsender Datenmenge meist noch überschaubar. Doch die Digitale Transformation macht auch vor Unternehmen nicht halt, die das komplizierte Feld Big Data bisher anderen überlassen haben. IoT-Anwendungen lassen die Datenmengen schnell exponentiell anschwellen. Und während IT-Teams die Herausforderung der Speicherung großer Datenmengen meist noch irgendwie in den Griff bekommen, hakt es vielerorts, wenn es darum geht, aus all den Daten Wert zu schöpfen. Auch das Know-how für die Anforderungen neuer Gesetzgebung, wie der DSGVO, ist bei kleineren Unternehmen oft nicht auf dem neuesten Stand. Was viele IT-Teams zu Beginn ihrer Reise in die Welt von Big Data unterschätzen, ist zum einen die schiere Größe und zum anderen die Komplexität der Datensätze. Auch der benötigte Aufwand, um berechtigten Zugriff auf Daten sicherzustellen, wird oft unterschätzt.

Bösartige E-Mail- und Social-Engineering-Angriffe

Ineffiziente Reaktionen auf E-Mail-Angriffe sorgen bei Unternehmen jedes Jahr für Milliardenverluste. Für viele Unternehmen ist das Auffinden, Identifizieren und Entfernen von E-Mail-Bedrohungen ein langsamer, manueller und ressourcenaufwendiger Prozess. Infolgedessen haben Angriffe oft Zeit, sich im Unternehmen zu verbreiten und weitere Schäden zu verursachen. Laut Verizon dauert es bei den meisten Phishing-Kampagnen nur 16 Minuten, bis jemand auf einen bösartigen Link klickt. Bei einer manuellen Reaktion auf einen Vorfall benötigen Unternehmen jedoch circa dreieinhalb Stunden, bis sie reagieren. In vielen Fällen hat sich zu diesem Zeitpunkt der Angriff bereits weiter ausgebreitet, was zusätzliche Untersuchungen und Gegenmaßnahmen erfordert.

Zertifikat ist allerdings nicht gleich Zertifikat

Für Hunderte von Jahren war die Originalunterschrift so etwas wie der De-facto-Standard um unterschiedlichste Vertragsdokumente und Vereinbarungen aller Art rechtskräftig zu unterzeichnen. Vor inzwischen mehr als einem Jahrzehnt verlagerten sich immer mehr Geschäftstätigkeiten und mit ihnen die zugehörigen Prozesse ins Internet. Es hat zwar eine Weile gedauert, aber mit dem Zeitalter der digitalen Transformation beginnen handgeschriebene Unterschriften auf papierbasierten Dokumenten zunehmend zu verschwinden und digitale Signaturen werden weltweit mehr und mehr akzeptiert.

Datensicherheit und -kontrolle mit CASBs

Egal ob Start-up oder Konzern: Collaboration Tools sind auch in deutschen Unternehmen überaus beliebt. Sie lassen sich besonders leicht in individuelle Workflows integrieren und sind auf verschiedenen Endgeräten nutzbar. Zu den weltweit meistgenutzten Collaboration Tools gehört derzeit Slack. Die Cloudanwendung stellt allerdings eine Herausforderung für die Datensicherheit dar, die nur mit speziellen Cloud Security-Lösungen zuverlässig bewältigt werden kann. In wenigen Jahren hat sich Slack von einer relativ unbekannten Cloud-Anwendung zu einer der beliebtesten Team Collaboration-Lösungen der Welt entwickelt. Ihr Siegeszug in den meisten Unternehmen beginnt häufig mit einem Dasein als Schatten-Anwendung, die zunächst nur von einzelnen unternehmensinternen Arbeitsgruppen genutzt wird. Von dort aus entwickelt sie sich in der Regel schnell zum beliebtesten Collaboration-Tool in der gesamten Organisation.

KI: Neue Spielregeln für IT-Sicherheit

Gerade in jüngster Zeit haben automatisierte Phishing-Angriffe relativ plötzlich stark zugenommen. Dank künstlicher Intelligenz (KI), maschinellem Lernen und Big Data sind die Inhalte deutlich überzeugender und die Angriffsmethodik überaus präzise. Mit traditionellen Phishing-Angriffen haben die Attacken nicht mehr viel gemein. Während IT-Verantwortliche KI einsetzen, um Sicherheit auf die nächste Stufe zu bringen, darf man sich getrost fragen, was passiert, wenn diese Technologie in die falschen Hände, die der Bad Guys, gerät? Die Weiterentwicklung des Internets und die Fortschritte beim Computing haben uns in die Lage versetzt auch für komplexe Probleme exakte Lösungen zu finden. Von der Astrophysik über biologische Systeme bis hin zu Automatisierung und Präzision. Allerdings sind alle diese Systeme inhärent anfällig für Cyber-Bedrohungen. Gerade in unserer schnelllebigen Welt, in der Innovationen im kommen und gehen muss Cybersicherheit weiterhin im Vordergrund stehen. Insbesondere was die durch das Internet der Dinge (IoT) erzeugte Datenflut anbelangt. Beim Identifizieren von Malware hat man sich in hohem Maße darauf verlassen, bestimmte Dateisignaturen zu erkennen. Oder auf regelbasierte Systeme die Netzwerkanomalitäten aufdecken.

DDoS-Angriffe nehmen weiter Fahrt auf

DDoS-Attacken nehmen in Anzahl und Dauer deutlich zu, sie werden komplexer und raffinierter. Darauf machen die IT-Sicherheitsexperten der PSW Group unter Berufung auf den Lagebericht zur IT-Sicherheit 2018 des Bundesamtes für Sicherheit in der Informationstechnik (BSI) aufmerksam. Demnach gehörten DDoS-Attacken 2017 und 2018 zu den häufigsten beobachteten Sicherheitsvorfällen. Im dritten Quartal 2018 hat sich das durchschnittliche DDoS-Angriffsvolumen im Vergleich zum ersten Quartal mehr als verdoppelt. Durchschnittlich 175 Angriffen pro Tag wurden zwischen Juli und September 2018 gestartet. Die Opfer waren vor allem Service-Provider in Deutschland, in Österreich und in der Schweiz: 87 Prozent aller Provider wurden 2018 angegriffen. Und bereits für das 1. Quartal dieses Jahres registrierte Link11 schon 11.177 DDoS-Angriffe.

Fluch und Segen des Darkwebs

Strengere Gesetzesnormen für Betreiber von Internet-Plattformen, die Straftaten ermöglichen und zugangsbeschränkt sind - das forderte das BMI in einem in Q1 2019 eingebrachten Gesetzesantrag. Was zunächst durchweg positiv klingt, wird vor allem von Seiten der Bundesdatenschützer scharf kritisiert. Denn hinter dieser Forderung verbirgt sich mehr als nur das Verbot von Webseiten, die ein Tummelplatz für illegale Aktivitäten sind. Auch Darkweb-Plattformen, die lediglich unzugänglichen und anonymen Speicherplatz zur Verfügung stellen, unterlägen der Verordnung. Da diese nicht nur von kriminellen Akteuren genutzt werden, sehen Kritiker in dem Gesetzesentwurf einen starken Eingriff in die bürgerlichen Rechte. Aber welche Rolle spielt das Darkweb grundsätzlich? Und wie wird sich das "verborgene Netz" in Zukunft weiterentwickeln? Sivan Nir, Threat Analysis Team Leader bei Skybox Security, äußert sich zu den zwei Gesichtern des Darkwebs und seiner Zukunft.

Diese Webseite verwendet Cookies - Wir verwenden Cookies, um Inhalte und Anzeigen zu personalisieren, Funktionen für soziale Medien anbieten zu können und die Zugriffe auf unsere Website zu analysieren. Außerdem geben wir Informationen zu Ihrer Verwendung unserer Website an unsere Partner für soziale Medien, Werbung und Analysen weiter. Unsere Partner führen diese Informationen möglicherweise mit weiteren Daten zusammen, die Sie ihnen bereitgestellt haben oder die sie im Rahmen Ihrer Nutzung der Dienste gesammelt haben. Mit dem Klick auf „Erlauben“erklären Sie sich damit einverstanden. Weiterführende Informationen erhalten Sie in unserer Datenschutzerklärung.